Article

Stop Killer Cells, Start the Wound Healing Process

By inactivating the immune system's natural killer T cells, which migrate to wound sites and impede the healing process, researchers were able to accelerate wound closure.

A new discovery about the wound-healing process could lead to better treatments for diabetics and other patients who have wounds that are slow to heal.

Loyola University Health System researchers found that certain immune system cells slow the wound-healing process. Thus, it might be possible to improve healing by inactivating these immune system cells, said Elizabeth Kovacs, PhD, who heads the laboratory team that made the discovery.

The findings by Kovacs and colleagues are reported in the Journal of Surgical Research.

In the study, the immune system cells that impeded the healing process are called natural killer T (NKT) cells. NKT cells perform beneficial functions such as killing tumor cells and virus-infected cells. However, researchers discovered that NKT cells also migrate to wound sites and impede the healing process.

Kovacs and colleagues used an animal model to examine the effects of NKT cells on healing. Healing was significantly slower in normal mice that had NKT cells than it was in a special breed of mice that lacked NKT cells.

"We demonstrated that early wound closure was accelerated in the absence of NKT cells," Kovacs and colleagues wrote. "Importantly, we also made the novel observation that NKT cells themselves are a constituent of the early wound inflammatory infiltrate."

Certain conditions, such as diabetes and infections, can slow or prevent wounds from healing. The study found that NKT cells may be at least partially to blame. Researchers don't know how NKT cells slow healing. But they believe they may be able to inactivate NKT cells using an antibody. They are testing this prediction in a follow-up study.

The study was supported by the National Institutes of Health and by the Ralph and Marian C. Falk Medical Research Trust.

Scott Somers, PhD, who manages wound healing research and training grants supported by the NIH's National Institute of General Medical Sciences, said, “Beyond the novel finding of a fundamental mechanism controlling wound healing, this work also highlights the contributions of physician-scientists like Dr. Schneider, a surgical resident who is training to do hypothesis-based, cutting-edge scientific investigation."

Source: Loyola University Health System

Related Videos
Yehuda Handelsman, MD: Insulin Resistance in Cardiometabolic Disease and DCRM 2.0 | Image Credit: TMIOA
Laurence Sperling, MD: Expanding Cardiologists' Role in Obesity Management  | Image Credit: Emory University
Schafer Boeder, MD: Role of SGLT2 Inhibitors and GLP-1s in Type 1 Diabetes | Image Credit: UC San Diego
Matthew J. Budoff, MD: Examining the Interplay of Coronary Calcium and Osteoporosis | Image Credit: Lundquist Institute
Alice Cheng, MD: Exploring the Link Between Diabetes and Dementia | Image Credit: LinkedIn
Matthew J. Budoff, MD: Impact of Obesity on Cardiometabolic Health in T1D | Image Credit: The Lundquist Institute
Jennifer B. Green, MD: Implementation of Evidence-Based Therapies for T2D | Image Credit: Duke University
Ralph A. DeFronzo, MD: Noxious Nine and Mifepristone for Hypercortisolism in T2D | Image Credit: LinkedIn
Diabetes Dialogue: Diabetes Tech Updates from November 2024 | Image Credit: HCPLive
© 2024 MJH Life Sciences

All rights reserved.