Article

Testosterone vs Cortisol: Winner Determines Fight or Flight

When the scales tip in favor of testosterone, aggressive behavior wins out. When cortisol levels are high, you're going to walk away.

High levels of the stress hormone cortisol play a critical role in blocking testosterone's influence on competition and domination, according to new psychology research at The University of Texas at Austin.

The study, led by Robert Josephs, professor of psychology at The University of Texas at Austin, and Pranjal Mehta, assistant professor of psychology at the University of Oregon, is the first to show that two hormones—testosterone and cortisol—jointly regulate dominance.

Hormones and Behavior

The findings, available online in , show that when cortisol—a hormone released in the body in response to threat—increases, the body is mobilized to escape danger, rather than respond to any influence that testosterone is having on behavior.

Perhaps the stress of The Decision kept Lebron James from dominating the 2010 NBA playoffs.

The study provides new evidence that hormonal axes (complex feedback networks between hormones and particular brain areas that regulate testosterone levels and cortisol) work against each other to regulate dominant and competitive behaviors.

"It makes good adaptive sense that testosterone's behavioral influence during an emergency situation gets blocked because engaging in behaviors that are encouraged by testosterone, such as mating, competition and aggression, during an imminent survival situation could be fatal," Josephs said. "On the other hand, fight or flight behaviors encouraged by cortisol become more likely during an emergency situation when cortisol levels are high. Thus, it makes sense that the hormonal axes that regulate testosterone levels and cortisol levels are antagonistic."

As part of the study, the researchers measured hormone levels of saliva samples provided by 57 subjects. The respondents participated in a one-on-one competition and were given the opportunity to compete again after winning or losing. Among those who lost, 100 percent of the subjects with high testosterone and low cortisol requested a rematch to recapture their lost status.

However, 100 percent of participants with high testosterone and high cortisol declined to compete again. All subjects who declined a rematch experienced a significant drop in testosterone after defeat, which may help to explain their unwillingness to compete again, Josephs said.

The researchers suggest these findings reveal new insights into the physiological effects of stress and how they may play a role in fertility problems. According to research, chronically elevated cortisol levels can produce impotence and loss of libido by inhibiting testosterone production in men. In women, chronically high levels of cortisol can produce severe fertility problems and result in an abnormal menstrual cycle.

"When cortisol levels remain elevated, as is the case with so many people who are under constant stress, the ability to reproduce can suffer greatly," Josephs said. "However, these effects of cortisol in both men and women are reversed when stress levels go down."

Source: University of Texas at Austin

Related Videos
John Kane, MD | Credit: Northwell Health
Yehuda Handelsman, MD: Insulin Resistance in Cardiometabolic Disease and DCRM 2.0 | Image Credit: TMIOA
Laurence Sperling, MD: Expanding Cardiologists' Role in Obesity Management  | Image Credit: Emory University
Schafer Boeder, MD: Role of SGLT2 Inhibitors and GLP-1s in Type 1 Diabetes | Image Credit: UC San Diego
Matthew J. Budoff, MD: Examining the Interplay of Coronary Calcium and Osteoporosis | Image Credit: Lundquist Institute
Alice Cheng, MD: Exploring the Link Between Diabetes and Dementia | Image Credit: LinkedIn
Matthew J. Budoff, MD: Impact of Obesity on Cardiometabolic Health in T1D | Image Credit: The Lundquist Institute
Jennifer B. Green, MD: Implementation of Evidence-Based Therapies for T2D | Image Credit: Duke University
Ralph A. DeFronzo, MD: Noxious Nine and Mifepristone for Hypercortisolism in T2D | Image Credit: LinkedIn
© 2025 MJH Life Sciences

All rights reserved.