Publication

Article

MDNG Endocrinology

January 2007
Volume9
Issue 3

PharmaTech: GlaxoSmithKline

What's in the pipeline as far as new technologies for pharmaceutical giant GlaxoSmithKline? We investigate...

GlaxoSmithKline (GSK) employs "over 100,000 people, has more than 80 manufacturing sites in 37 countries, and makes almost four billion packs of medicines and healthcare products each year,” according to the GSK corporate brochure. In the area of R&D, the pharmaceutical company spends $14 million every day, or $562,000 every hour, on work performed by more than 15,000 people at 22 facilities and which includes more than 65 million screening tests a year.

A major part of GSK’s R&D eff orts are in drug discovery, consisting of seven research units the UK-based company calls Centres of Excellence for Drug Discovery, which focus on cardiovascular and urogenital diseases; metabolic and viral diseases; microbial, musculoskeletal, and proliferative diseases; neurological and gastrointestinal diseases; psychiatric diseases; respiratory and inflammatory diseases; and biopharmaceuticals. Once promising targets are discovered, GSK researchers shepherd them through the pipeline, investigating biochemical and physical properties, bioactivity, and other characteristics using proprietary strategic technologies, novel analytical technologies, and other tools and resources.

In the area of physical properties, a “team investigates the physical characteristics of the materials to make a medicine.” The team uses such techniques as x-ray powder diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). According to Wikipedia:

  • XRD “is an instrumental technique that is used to identify minerals, as well as other crystalline materials,” used for fingerprint characterization and structure determination of crystalline materials
  • DSC, a thermoanalytical technique, is used as a quality control instrument for evaluating sample purity and studying polymer curing.
  • TGA is used to test weight changes of samples in relation to change in temperature as a means of determining material characteristics, degradation temperatures, absorbed moisture content, and levels of inorganic and organic components, and solvent residues.
  • SEM, according to Ohio State, consists of a microscope using electrons instead of light to form images, resulting in a large depth of fi eld, and a large focus area for viewing closely spaced features at a high resolution.

Strategic technologies provide “technology innovation primarily focused on new product development platforms with a three-year delivery timeframe,” concentrating on exploratory pharmaceutics and drug delivery systems. The former “deliver technologies that require intensive training, high capital investment, and/or tight networks with internal or external groups while also supporting current GSK projects through gamma scintigraphy and animal models.” The gamma-emitting radioisotope judiciously introduced through gamma scintigraphy allows, through the intended delivery site, the transit of a dosage form to be non-invasively imaged in vivo, which can in turn be correlated with the rate and extent of drug absorption.

Scientists working with GSK novel analytical technologies are at the very cutting edge of modern drug discovery. The tools at their disposal include high performance liquid chromatography (HPLC), mass spectrometry, and near infra red spectroscopy. Used frequently in biochemistry and analytical chemistry, HPLC separates, identifies, and quantitates compounds in any sample that can be dissolved in a liquid. Helpful in measuring mass-to-charge ratio of ions, mass spectrometry’s applications include identifying unknown compounds, determining a compound’s structure, “studying the fundamentals of gas phase ion chemistry,” determining elements’ isotopic composition in a compound, and “quantifying the amount of a compound in a sample." Near infra red spectorscopy is also used to identify compounds and investigate samples’ compositions.

Source: www.gsk.com/responsibility/cr_report_ 2005/research/index.htm

Related Videos
Yehuda Handelsman, MD: Insulin Resistance in Cardiometabolic Disease and DCRM 2.0 | Image Credit: TMIOA
Laurence Sperling, MD: Expanding Cardiologists' Role in Obesity Management  | Image Credit: Emory University
Schafer Boeder, MD: Role of SGLT2 Inhibitors and GLP-1s in Type 1 Diabetes | Image Credit: UC San Diego
Matthew J. Budoff, MD: Examining the Interplay of Coronary Calcium and Osteoporosis | Image Credit: Lundquist Institute
Alice Cheng, MD: Exploring the Link Between Diabetes and Dementia | Image Credit: LinkedIn
Matthew J. Budoff, MD: Impact of Obesity on Cardiometabolic Health in T1D | Image Credit: The Lundquist Institute
Jennifer B. Green, MD: Implementation of Evidence-Based Therapies for T2D | Image Credit: Duke University
Ralph A. DeFronzo, MD: Noxious Nine and Mifepristone for Hypercortisolism in T2D | Image Credit: LinkedIn
Diabetes Dialogue: Diabetes Tech Updates from November 2024 | Image Credit: HCPLive
© 2024 MJH Life Sciences

All rights reserved.